

CSE DEPARTMENT, NCERC PAMPADY Page i

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CS 301 THEORY OF COMPUTATION

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in
Engineering and Frontier Technology and to impart quality education to mould technically competent
citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe
discipline, culture and spiritually, and to mould them in to technological giants, dedicated research
scientists and intellectual leaders of the country who can spread the beams of light and happiness among
the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page ii

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

5.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering

through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages,
Web Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by

learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

Free Hand

CSE DEPARTMENT, NCERC PAMPADY Page iii

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge : Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis : Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions : Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems : Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities an d
norms of the engineering practice.

9. Individual and team work : Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11. Project management and finance : Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.
12. Life-long learning : Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

CSE DEPARTMENT, NCERC PAMPADY Page iv

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES

SUBJECT CODE: C301
COURSE OUTCOMES

C301.1 To identify various formal languages such as regular, context-free, context sensitive and
unrestricted languages.

C301.2 To acquire the knowledge about designing finite state automata, regular grammar, regular
expression and Myhill- Nerode relation representations for regular languages

C301.3 To implement the concept of pumping lemma for regular language
and to acquire Knowledge on the concept of context free languages

C301.4 To design push-down automata and context-free grammar representations for context-free
languages.

C301.5 To designing Turing Machines for accepting recursively enumerable languages.

C301.6 To Acquire knowledge about the usage of various types of Turing machines and their
working and to identify the notions of decidability and undecidability of problems,
Halting problem

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1
3 3

CO2
 3 3 2 3

CO3
 3 3 3 3

CO4
 3 3 2 2 3

CO5
 3 3 3 3

CO6
 3 3 2 3

CO1
3 3 3 2.4 2 3

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

CSE DEPARTMENT, NCERC PAMPADY Page v

PSO MAPPINGS

CO’S PSO1 PSO2 PSO3

CO1
3

CO2
3 2

CO3
3 2

CO4
3 3

CO5
3 3

CO6
3 3

SYLLABUS

CSE DEPARTMENT, NCERC PAMPADY Page vi

CSE DEPARTMENT, NCERC PAMPADY Page vii

QUESTION BANK

MODULE I

Q:N

O:

QUESTIONS

CO

KL

PA

GE

NO

:

1

CO1 K6 15

2 Differentiate between the transition function in DFA, NFA and ϵ-

NFA

CO1 K3 19

3

.

CO1 K6 23

4

CO1 K1 05

5

CO1 K6 09

CSE DEPARTMENT, NCERC PAMPADY Page viii

6

CO1 K1 86

7

CO1

CO1

K6

K1

59

34

8

CO1

CO1

K6

K1

27

34

MODULE II

1

CO2 K6 40

2

CO2

CO2

K6

K6

71

50

3

CO2 K1 86

CSE DEPARTMENT, NCERC PAMPADY Page ix

4

CO2 K6 45

5

CO2 K6 90

6

CO2 K6 71

7

CO2 K6

67

8

CO2 K6 71

9 Can we use finite state automata to evaluate 1’s complement of a

binary number? Design a machine to perform the same.(3)

CO2 K6 39

10

State and prove equivalence of Regular expression and Finite
automata

CO2

K1

54

CSE DEPARTMENT, NCERC PAMPADY Page x

11

CO2 K6 45

MODULE III

1

CO3 K6 111

2

CO3

CO3

K4

K6

90

107

3 Construct CFG for a
n
b

m
c

m+n
where m,n>=1 CO3 K4 106

4 What do you mean by useless symbol in a grammar? Show the
elimination of useless symbols with an example..

CO3 K1 107

5

CO3 K6 111

6

CO3 K4 90

7

CO3 K6 107

8

CO3 K4 105

9

CO3

CO3

K4

K1

90

98

CSE DEPARTMENT, NCERC PAMPADY Page xi

10

CO3

CO3

K6

K6

107

116

11 State closure properties of regular sets CO3 K1 98

12

CO3 K4 105

13

CO3 K6 116

MODULE IV

1

CO4 K6 133

2

CO4 K1 123

3

CO4

CO4

K3

K6

162

133

4 Explain any two closure properties of CFLs CO4 K2 135

5 Compare DPDA and NPDA CO4 K2 132

6 Explain the different methods by which a PDA accepts a language CO4 K2 122

7

CO4 K6 133

8 Explain equivalance of acceptance of NPDA and CFG CO4 K2 128

9 Explain decision properties related to CFL CO4 K2 136

10 Design a PDA to accept the language a
n
b

n
c

m
where m,n>=1 CO4 K6 134

MODULE V

CSE DEPARTMENT, NCERC PAMPADY Page xii

1

CO5

CO5

K6

K6

144

161

2

CO5

CO5

K1

K6

144

161

3

CO5 K6

161

4

CO5 K6

150

6

CO5 K1 144

8

CO5

CO5

K3

K1

150

151

9

CO5

CO5

K1

K6

144

147

10

CO5

 CO5

K6

K6

160

159

MODULE VI

1

CO6

K2

176

2

3

CO6

CO6

K1

K1

169

163

4

CO6 K1 167

5

CO6 K2 169

CSE DEPARTMENT, NCERC PAMPADY Page xiii

6

CO6 K4 176

7 Explain multitape turing machine in detail CO6 K2 165

8 Prove that intersection of two recursive languages are recursive Co6 K4 173

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 Classes of automata 180

2 Applications of automata 281

CSE DEPARTMENT, NCERC PAMPADY Page xiv

MODULE NOTES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

Classes And Applications Of Automata

Automata theory is the study of abstract machines and automata, as well as the computational
problems that can be solved using them. It is a theory in theoretical computer science. The word
automata (the plural of automaton) comes from the Greek word αὐτόματα, which means "self-
making". An automaton (Automata in plural) is an abstract self-propelled computing device

which follows a predetermined sequence of operations automatically. An automaton with a finite
number of states is called a Finite Automaton (FA) or Finite State Machine (FSM).

The figure at right illustrates a finite-state machine, which belongs to a well-known type of
automaton. This automaton consists of states (represented in the figure by circles) and transitions
(represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump)
to another state, according to its transition function, which takes the previous state and current
input symbol as its arguments.

Automata theory is closely related to formal language theory. In this context, automata are used

as finite representations of formal languages that may be infinite. Automata are often classified
by the class of formal languages they can recognize, as in the Chomsky hierarchy, which
describes a nesting relationship between major classes of automata. Automata play a major role
in theory of computation, compiler construction, artificial intelligence, parsing and formal
verification.

Automata

What follows is a general definition of automaton, which restricts a broader definition of system

to one viewed as acting in discrete time-steps, with its state behavior and outputs defined at each
step by unchanging functions of only its state and input.

[5]

Informal description

An automaton runs when it is given some sequence of inputs in discrete (individual) time steps

or steps. An automaton processes one input picked from a set of symbols or letters, which is
called an input alphabet. The symbols received by the automaton as input at any step are a
sequence of symbols called words. An automaton has a set of states. At each moment during a
run of the automaton, the automaton is in one of its states. When the automaton receives new

input it moves to another state (or transitions) based on a transition function that takes the
previous state and current input symbol as parameters. At the same time, another function called
the output function produces symbols from the output alphabet, also according to the previous
state and current input symbol. The automaton reads the symbols of the input word and

transitions between states until the word is read completely, if it is finite in length, at which point
the automaton halts. A state at which the automaton halts is called the final state.

To investigate the possible state/input/output sequences in an automaton using formal language
theory, a machine can be assigned a starting state and a set of accepting states. Then, depending
on whether a run starting from the starting state ends in an accepting state, the automaton can be
said to accept or reject an input sequence. The set of all the words accepted by an automaton is

https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Automaton
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Transition_table
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Compiler_construction
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Automata_theory#cite_note-Arbib_1969-5
https://en.wikipedia.org/wiki/Symbol_(formal)
https://en.wikipedia.org/wiki/Alphabet_(computer_science)
https://en.wikipedia.org/wiki/Formal_language

180

called the language recognized by the automaton . A familiar example of a machine recognizing
a language is an electronic lock which accepts or rejects attempts to enter the correct code.

Classes of automata

The following is an incomplete list of types of automata.

Discrete, continuous, and hybrid automata

Normally automata theory describes the states of abstract machines but there are discrete automata,

analog automata or continuous automata, or hybrid discrete-continuous automata, which use digital data,

analog data or continuous time, or digital and analog data, respectively.

Applications

Each model in automata theory plays important roles in several applied areas. Finite automata

are used in text processing, compilers, and hardware design. Context-free grammar (CFGs) are
used in programming languages and artificial intelligence. Originally, CFGs were used in the
study of the human languages. Cellular automata are used in the field of artificial life, the most

famous example being John Conway's Game of Life. Some other examples which could be
explained using automata theory in biology include mollusk and pine cones growth and
pigmentation patterns. Going further, a theory suggesting that the whole universe is computed by
some sort of a discrete automaton, is advocated by some scientists. The idea originated in the

work of Konrad Zuse, and was popularized in America by Edward Fredkin. Automata also
appear in the theory of finite fields: the set of irreducible polynomials which can be written as
composition of degree two polynomials is in fact a regular language.

[15]
 Another problem for

which automata can be used is the induction of regular languages.

Automata simulators

Automata simulators are pedagogical tools used to teach, learn and research automata theory. An
automata simulator takes as input the description of an automaton and then simulates its working

for an arbitrary input string. The description of the automaton can be entered in several ways. An
automaton can be defined in a symbolic language or its specification may be entered in a
predesigned form or its transition diagram may be drawn by clicking and dragging the mouse.
Well known automata simulators include Turing's World, JFLAP, VAS, TAGS and
SimStudio.

[16]

Connection to category theory

One can define several distinct categories of automata
[17]

 following the automata classification

into different types described in the previous section. The mathematical category of deterministic
automata, sequential machines or sequential automata, and Turing machines with automata
homomorphisms defining the arrows between automata is a Cartesian closed category,

[18][19]
 it

has both categorical limits and colimits. An automata homomorphism maps a quintuple of an

https://en.wikipedia.org/wiki/Electronic_lock#Numerical_codes,_passwords,_and_passphrases
https://en.wikipedia.org/wiki/Analog_automata
https://en.wikipedia.org/w/index.php?title=Continuous_automata&action=edit&redlink=1
https://en.wikipedia.org/wiki/Hybrid_automaton
https://en.wikipedia.org/wiki/Finite_automata
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Cellular_automata
https://en.wikipedia.org/wiki/Artificial_life
https://en.wikipedia.org/wiki/John_Horton_Conway
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Konrad_Zuse
https://en.wikipedia.org/wiki/Edward_Fredkin
https://en.wikipedia.org/wiki/Automata_theory#cite_note-15
https://en.wikipedia.org/wiki/Induction_of_regular_languages
https://en.wikipedia.org/wiki/Symbolic_language_(programming)
https://en.wikipedia.org/wiki/Automata_theory#cite_note-16
https://en.wikipedia.org/wiki/Category_(mathematics)
https://en.wikipedia.org/wiki/Automata_theory#cite_note-17
https://en.wikipedia.org/w/index.php?title=Sequential_machine&action=edit&redlink=1
https://en.wikipedia.org/wiki/Cartesian_closed_category
https://en.wikipedia.org/wiki/Automata_theory#cite_note-18
https://en.wikipedia.org/wiki/Automata_theory#cite_note-18

181

automaton Ai onto the quintuple of another automaton Aj.
[20]

 Automata homomorphisms can also
be considered as automata transformations or as semigroup homomorphisms, when the state
space, S, of the automaton is defined as a semigroup Sg. Monoids are also considered as a
suitable setting for automata in monoidal categories.

[21][22][23]

Categories of variable automata

One could also define a variable automaton, in the sense of Norbert Wiener in his book on The

Human Use of Human Beings via the endomorphisms . Then, one can show that such

variable automata homomorphisms form a mathematical group. In the case of non-deterministic,
or other complex kinds of automata, the latter set of endomorphisms may become, however, a
variable automaton groupoid. Therefore, in the most general case, categories of variable
automata of any kind are categories of groupoids or groupoid categories. Moreover, the category

of reversible automata is then a 2-category, and also a subcategory of the 2-category of
groupoids, or the groupoid category.

Applications of various Automata

Automata is a machine that can accept the Strings of a Language L over an input alphabet .
So far we are familiar with the Types of Automata . Now, let us discuss the expressive power of
Automata and further understand its Applications.

Expressive Power of various Automata:
The Expressive Power of any machine can be determined from the class or set of Languages

accepted by that particular type of Machine. Here is the increasing sequence of expressive power
of machines :

As we can observe that FA is less powerful than any other machine. It is important to note that
DFA and NFA are of same power because every NFA can be converted into DFA and every
DFA can be converted into NFA .
The Turing Machine i.e. TM is more powerful than any other machine.

(i) Finite Automata (FA) equivalence:

Finite Automata

≡ PDA with finite Stack

≡ TM with finite tape

≡ TM with unidirectional tape

≡ TM with read only tape

(ii) Pushdown Automata (PDA) equivalence:

https://en.wikipedia.org/wiki/Automata_theory#cite_note-20
https://en.wikipedia.org/wiki/Monoid
https://en.wikipedia.org/wiki/Monoidal_category
https://en.wikipedia.org/wiki/Automata_theory#cite_note-21
https://en.wikipedia.org/wiki/Automata_theory#cite_note-21
https://en.wikipedia.org/wiki/Automata_theory#cite_note-23
https://en.wikipedia.org/wiki/Norbert_Wiener
https://en.wikipedia.org/wiki/The_Human_Use_of_Human_Beings
https://en.wikipedia.org/wiki/The_Human_Use_of_Human_Beings
https://en.wikipedia.org/wiki/Groupoid
https://en.wikipedia.org/w/index.php?title=Categories_of_groupoids&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Groupoid_category&action=edit&redlink=1
https://en.wikipedia.org/wiki/2-category

182

PDA ≡ Finite Automata with Stack

(iii) Turing Machine (TM) equivalence:

Turing Machine

≡ PDA with additional Stack

≡ FA with 2 Stacks

The Applications of these Automata are given as follows:

1. Finite Automata (FA) –

 For the designing of lexical analysis of a compiler.
 For recognizing the pattern using regular expressions.
 For the designing of the combination and sequential circuits using Mealy and Moore

Machines.
 Used in text editors.
 For the implementation of spell checkers.

2. Push Down Automata (PDA) –

 For designing the parsing phase of a compiler (Syntax Analysis).
 For implementation of stack applications.
 For evaluating the arithmetic expressions.
 For solving the Tower of Hanoi Problem.

3. Linear Bounded Automata (LBA) –

 For implementation of genetic programming.
 For constructing syntactic parse trees for semantic analysis of the compiler.

4. Turing Machine (TM) –

 For solving any recursively enumerable problem.
 For understanding complexity theory.
 For implementation of neural networks.
 For implementation of Robotics Applications.
 For implementation of artificial intelligence.

https://www.geeksforgeeks.org/toc-finite-automata-introduction/
https://www.geeksforgeeks.org/theory-of-computation-pushdown-automata/
https://www.geeksforgeeks.org/turing-machine/

